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Motivation (Part I): Long Term Sustainability on the Lunar Surface 
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Motivation (Part II): Extreme Terrain Planetary Exploration
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To support everything from small rovers like 
large HEO, we need to deliver scalable power 
in small form factors, pushing the design 
towards a high voltage, modular architecture.

Power Delivery
200 W – 10 kW

For autonomous control and big data 
capabilities, we need high bandwidth and low 
error rates. We need a dual comms platform, 
with power line carrier for extreme terrain and 
fiber optics for everything else.

1 Gb/s fiber, 8 Mb/s power line
Many HEO and robotics missions require 
distances of at least 1 km, so we’re starting 
there and extending to 10 km to support future 
missions. That means we need a high power, 
low mass tether than can be tightly spooled.

1 – 10 km

Communications Transmission

Follow on effortsLong-term TYMPO capabilities

Mission Potential Launch Power (W) Comm (Mb/s) Length (m) Tensile Load (N) Duration (days)
Tether 
Management

Temp Min (C) Temp Max (C)

Moon Moon Diver 2020s 54 0.18 300 200 14 Active -30 130

ISRU Proc. 
Demo

2020s 1,000 TBD 5,000 TBD 1,000 TBD -173 130

ISRU Proc. 
Pilot

2020s 2,000 TBD 5,000 TBD 1,000 TBD -173 130

ISRU Proc. 
Full 2020s 150,000 TBD 5,000 TBD 1,000 TBD -173 130

FARSIDE 2030s 72 1,000 12,000 - 1,825 Active -173 130

PSR Rover 2020s TBD TBD 1,000 TBD 14 Active -250 130

Icy 
Moons

EELS 
Enceladus

2040s 500 1,000 5,000 100 3,650 Hybrid -240 -128

Venus Venus 
Aerobot

2030s - 1,000 50 50 365 Hybrid -50 125

Earth EELS Earth 2020s 2,000 1,000 250 1,000 - Active / Offboard -23 23

Near-term TYMPO capabilities
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TYMPO: Enabling Long-Distance Planetary Missions
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Conversion Design – Multilevel Converter Architecture
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DCX and LLC converters have 
been demonstrated to be extremely 
efficient (99%+). A full bridge 
primary with a 1:1.5 transformer 
and a voltage doubler secondary 
gives us a 1:3 conversion ratio.

By combining modules in Input 
Parallel, Output Series we can 
build step-up converters. Input 
Series, Output Parallel for step-
down. With 5 in series, we achieve 
1.5 kV with 300 V on each switch.
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GaN Performance vs. Flight Silicon:
• Commercial applications have rapidly embraced GaN 

due to figure of merit improvements over Si MOSFETs
• For deep space applications, these improvements are 

even more dramatic compared to qualified Si MOSFETs
• Some relevant advantages over Si MOSFETs are:

• Comparable RDS,ON, including temperature variance
• Reduced CISS by a factor of 10 to 20
• Reduced COSS by a factor of 3 to 10
• Reduced package size by a factor of 3 to 15

High-
Reliability

Low 
Activation 

Energy

Radiation 
Tolerance

Operation 
near full 
voltage

Wide 
thermal 
range

High-
Density

Low 
conduction 

losses

Low 
switching 

losses
Small 

transistor 
footprint

Minimal 
filtering 

elements

Converter Improvements from GaN:
• The reduced activation energy of GaN devices allows for 

optimization of converters for improved:
• Efficiency through reduction in switching losses
• Power density through reduction in filtering needs
• Specific power through reduction in filtering needs

• The reduced activation energy of GaN devices allows for 
optimization of converters for improved:

• Efficiency through reduction in switching losses
• Power density through reduction in filtering needs
• Specific power through reduction in filtering needs

Conversion Design – GaN Benefits to Power Conversion
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Conversion Design – Demonstration DCX Converter
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Specification Parameter
Module Power 100 W
Input Voltage 28 V
Output Voltage 28 V
Primary FET GS61008T
Secondary FET GS61008T
Resonant Capacitor 0.125 µF
Resonant Inductor 5 µH
Resonant Frequency 150 kHz

To demo the module structure, we built 
a breadboard of our DCX module, 
which can be configured as a full bridge 
or half-bridge doubler. Achieving 99 % 
peak efficiency, this demo helps us 
design the full-scale power stage.
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Power Conversion – Transmission Scale Converter
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The full power converter is a scaled 
version of the demo hardware. The 
650V GaN FETs have been shown to 
survive SEGR and SEB to 75 % of 
rated voltage, making our applied 300 V 
low-stress for the converter in flight.

Specification Parameter
Module Power 200 W
Input Voltage 100 V
Output Voltage 300 V
Primary FET GS66506T
Secondary FET GS66506T
Resonant Capacitor 0.3 µF
Resonant Inductor 4.4 µH
MV Resonant Capacitor 1 µF
Resonant Frequency 150 kHz
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Tether – Design Methodology 
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Fitting the tethers onto rovers is a challenge. Minimizing the tether volume allows for smaller rovers to hold the tethers, but trades off against voltage 
withstand capabilities. We have designed a four-conductor tether, comprised of a core supporting structure with embedded fiber optics, four 22 AWG 

conductors with high voltage insulation with semiconductive coating to avoid flashover in vacuum, a strength layer to support heavy loads, and an abrasion 
layer for the harsh Lunar regolith.
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Communications  
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Power

Communication

Fiber Optics

Copper Wire

Spliiter1 Splitter2 Power

Communication

Downlink
Uplink

For missions that can’t rely on fiber optics or need a backup, TYMPO 
provides 10 Mb/s power line carrier communications. This platforms the 

same 1.5 kV tether lines as the power path, reducing tether mass.

For missions that demand high speed TYMPO provides 1 Gb/s fiber 
communications. We use fiber for all missions who don’t encounter too 

extreme of terrain.

max QAM BW # of Carriers Subcarrier BW Tx Power 𝑽𝒑

256 
(8 bits)

17.664 MHz 4096 4.3125 KHz 14.5 dBm (28 mW) 2.37 V



jpl.nasa.gov5/19/22 © 2022 California Institute of Technology. Government sponsorship acknowledged. 12



jpl.nasa.gov

5/19/22 © 2022 California Institute of Technology. Government sponsorship acknowledged. 13


